Flyttande medelvärde I det här exemplet lär du dig hur du beräknar glidande medelvärdet för en tidsserie i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Kan inte hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta genomsnitt och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv ett diagram över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna, eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer toppar och dalar släpper ut. Ju mindre intervallet desto närmare de rörliga medelvärdena är de faktiska datapunkterna. Hur man beräknar rörliga medelvärden i Excel Excel-dataanalys för dummies, 2: a utgåvan Dataanalyskommandot ger ett verktyg för att beräkna rörliga och exponentiellt jämnade medelvärden i Excel. Antag, för att illustrera det, att du har uppsamlat daglig temperaturinformation. Du vill beräkna det tre dagars glidande medlet 8212 i genomsnitt av de senaste tre dagarna 8212 som en del av några enkla väderprognoser. För att beräkna glidmedel för denna dataset, gör följande steg. För att beräkna ett glidande medelvärde klickar du först på kommandoknappen Data tab8217s dataanalys. När Excel visar dialogrutan Dataanalys väljer du objektet Flyttande medel från listan och klickar sedan på OK. Excel visar dialogrutan Rörlig medelvärde. Identifiera de data som du vill använda för att beräkna det glidande medlet. Klicka i textrutan Inmatningsområde i dialogrutan Rörlig medelvärde. Identifiera sedan ingångsintervallet, antingen genom att skriva in en arbetsbladets intervalladress eller genom att använda musen för att välja arbetsbladets intervall. Din referensreferens bör använda absoluta celladresser. En absolut celladress föregår kolumnbokstaven och radnumret med tecken, som i A1: A10. Om den första cellen i ditt inmatningsområde innehåller en textetikett för att identifiera eller beskriva dina data markerar du kryssrutan Etiketter i första raden. I Excel-textrutan berätta Excel hur många värden som ska inkluderas i den genomsnittliga beräkningen. Du kan beräkna ett glidande medelvärde med ett antal värden. Som standard använder Excel de senaste tre värdena för att beräkna det glidande genomsnittet. För att ange att ett annat antal värden ska användas för att beräkna det glidande genomsnittet, ange det värdet i textrutan Intervall. Berätta Excel där du ska placera de glidande medelvärdena. Använd textrutan Utmatningsområde för att identifiera det arbetsbladsintervall som du vill placera den rörliga genomsnittsdata för. I kalkylbladsexemplet har den glidande genomsnittsdata placerats i arbetsarkets intervall B2: B10. (Valfritt) Ange om du vill ha ett diagram. Om du vill ha ett diagram som visar den glidande genomsnittliga informationen markerar du kryssrutan Diagramutmatning. (Valfritt) Ange om du vill beräkna standard felinformation. Om du vill beräkna standardfel för data väljer du kryssrutan Standardfel. Excel placerar standardfelvärden bredvid de glidande medelvärdena. (Standardfelinformationen går in i C2: C10.) När du har slutfört ange vilken flyttbar genomsnittsinformation du vill ha beräknad och var du vill placera den, klicka på OK. Excel beräknar glidande medelinformation. Obs! Om Excel doesn8217t har tillräckligt med information för att beräkna ett glidande medelvärde för ett standardfel placerar det felmeddelandet i cellen. Du kan se flera celler som visar detta felmeddelande som ett värde. Flytta genomsnitt: Vad är de Bland de mest populära tekniska indikatorerna används glidande medelvärden för att mäta riktningen för den nuvarande trenden. Varje typ av glidande medelvärde (vanligtvis skrivet i denna handledning som MA) är ett matematiskt resultat som beräknas genom att medelvärda ett antal tidigare datapunkter. När det bestämts är det resulterande genomsnittet plottat på ett diagram för att låta handlare se på jämn data istället för att fokusera på de dagliga prisfluktuationerna som är inneboende på alla finansmarknader. Den enklaste formen av ett glidande medel, lämpligt känt som ett enkelt glidande medelvärde (SMA), beräknas genom att ta det aritmetiska medelvärdet av en given uppsättning värden. För att beräkna ett grundläggande 10-dagars glidande medelvärde skulle du lägga till slutkurserna från de senaste 10 dagarna och sedan dela resultatet med 10. I Figur 1 är summan av priserna under de senaste 10 dagarna (110) dividerat med antalet dagar (10) för att komma fram till 10-dagars genomsnittet. Om en näringsidkare vill se ett 50-dagars medel istället skulle samma typ av beräkning göras, men det skulle inkludera priserna under de senaste 50 dagarna. Det resulterande genomsnittet under (11) tar hänsyn till de senaste 10 datapunkterna för att ge handlare en uppfattning om hur en tillgång prissätts relativt de senaste 10 dagarna. Kanske du undrar varför tekniska handlare kallar det här verktyget ett glidande medelvärde och inte bara en vanlig medelvärde. Svaret är att när de nya värdena blir tillgängliga måste de äldsta datapunkterna släppas från uppsättningen och nya datapunkter måste komma in för att ersätta dem. Således flyttar datasatsen ständigt för att redogöra för nya data när den blir tillgänglig. Denna beräkningsmetod säkerställer att endast den nuvarande informationen redovisas. I figur 2 flyttas den röda rutan (representerande de senaste 10 datapunkterna) till höger om det nya värdet på 5 och det sista värdet av 15 släpps från beräkningen. Eftersom det relativt lilla värdet på 5 ersätter det höga värdet på 15, förväntar du dig att genomsnittet av datamängden minskar, vilket det gör, i det här fallet från 11 till 10. Vad ser Moving Averages Like När värdena på MA har beräknats, de är plottade på ett diagram och sedan anslutna för att skapa en rörlig genomsnittslinje. Dessa kurvor är vanliga på diagrammen för tekniska handlare, men hur de används kan variera drastiskt (mer om detta senare). Som du kan se i Figur 3 är det möjligt att lägga till mer än ett glidande medelvärde till ett diagram genom att justera antalet tidsperioder som används i beräkningen. Dessa böjda linjer kan verka distraherande eller förvirrande först, men du kommer att bli vana vid dem som tiden går vidare. Den röda linjen är helt enkelt genomsnittspriset under de senaste 50 dagarna, medan den blå linjen är genomsnittspriset under de senaste 100 dagarna. Nu när du förstår vad ett rörligt medelvärde är och hur det ser ut, introducera väl en annan typ av rörligt medelvärde och undersöka hur det skiljer sig från det tidigare nämnda enkla glidande medlet. Det enkla glidande medlet är extremt populärt bland handlare, men som alla tekniska indikatorer har det kritiker. Många individer hävdar att användbarheten av SMA är begränsad eftersom varje punkt i dataserien är densamma, oavsett var det inträffar i sekvensen. Kritiker hävdar att de senaste uppgifterna är mer signifikanta än de äldre uppgifterna och bör ha större inverkan på slutresultatet. Som svar på denna kritik började näringsidkare lägga större vikt vid de senaste uppgifterna, som sedan har lett till uppfinningen av olika typer av nya medelvärden, varav den mest populära är det exponentiella rörliga genomsnittet (EMA). (För vidare läsning, se Grunderna för viktade rörliga medelvärden och vad som är skillnaden mellan en SMA och en EMA) Exponentiell rörlig genomsnitts Det exponentiella rörliga genomsnittsvärdet är en typ av rörligt medelvärde som ger större vikt till de senaste priserna i ett försök att göra det mer responsivt till ny information. Att lära sig den något komplicerade ekvationen för att beräkna en EMA kan vara onödig för många handlare, eftersom nästan alla kartläggningspaket gör beräkningarna för dig. Men för dig matte geeks där ute, här är EMA-ekvationen: När du använder formeln för att beräkna den första punkten hos EMA kan du märka att det inte finns något värde tillgängligt för att använda som tidigare EMA. Detta lilla problem kan lösas genom att starta beräkningen med ett enkelt glidande medelvärde och fortsätta med ovanstående formel därifrån. Vi har försett dig med ett provkalkylblad som innehåller verkliga exempel på hur man beräknar både ett enkelt glidande medelvärde och ett exponentiellt glidande medelvärde. Skillnaden mellan EMA och SMA Nu när du har en bättre förståelse för hur SMA och EMA beräknas, kan vi titta på hur dessa genomsnitt skiljer sig åt. Genom att titta på beräkningen av EMA kommer du att märka att större vikt läggs på de senaste datapunkterna, vilket gör det till en typ av vägt genomsnitt. I Figur 5 är antalet tidsperioder som används i varje genomsnitt identiskt (15), men EMA svarar snabbare på de förändrade priserna. Lägg märke till hur EMA har ett högre värde när priset stiger och faller snabbare än SMA när priset sjunker. Denna respons är den främsta anledningen till att många handlare föredrar att använda EMA över SMA. Vad betyder de olika dagarna Medflyttande medelvärden är en helt anpassningsbar indikator, vilket innebär att användaren fritt kan välja vilken tidsram de vill ha när man skapar genomsnittet. De vanligaste tidsperioderna som används i glidande medelvärden är 15, 20, 30, 50, 100 och 200 dagar. Ju kortare tidsintervallet användes för att skapa medelvärdet desto känsligare blir det för prisändringar. Ju längre tidspanelen är, desto mindre känslig eller jämnare blir medeltalet. Det finns ingen rätt tidsram att använda när du ställer in dina glidande medelvärden. Det bästa sättet att ta reda på vilken som passar dig bäst är att experimentera med ett antal olika tidsperioder tills du hittar en som passar din strategi. Flytta genomsnitt: Hur man använder dem
No comments:
Post a Comment